Dougherty Valley HS Chemistry - AP IMFs – Heating Curve Practice

Name:

Period:

Seat#:

Worksheet #3

Directions: Use the heating curve below for ice at -35°C being converted to steam at 128°C. If you need a refresher on Heating Curve calculations here is a YouTube video of the Honors Chemistry lecture on the topic.

5)	How many joul 0.0°C ? <u>2.05 x 10</u> How much ene	es (J) of ener <u>g</u> <u>7</u> J rgy (in J) is re	y are release	ed when 6.80	E3 g of stear	n at 100.0°C	are complete	ely frozen to i	ce at
			-						
7)	Using the inforr from 25°C to 2,	nation in the c 500°C ? <u>3.41 x</u>	hart below, h	iow much he	at is needed t	o raise the te	mperature of	85g of potas	sium
	Substance	$\begin{array}{c} \mathbf{C} \text{ (solid)} \\ \left(\frac{J}{g \cdot K}\right) \end{array}$	M.P. (°C)	$\frac{\Delta \mathbf{H}_{\mathbf{fus}}}{\left(\frac{J}{g}\right)}$	C (liquid) $\left(\frac{J}{g \cdot K}\right)$	B.P. (°C)	$\frac{\Delta \mathbf{H}_{\mathbf{vap}}}{\left(\frac{J}{g}\right)}$	$\frac{\mathbf{C} \text{ (gas)}}{\left(\frac{J}{g \cdot K}\right)}$	
	K	0.560	62	61.4	1.070	760	2025	0.671	